your numerical solution.
SOLUTION
Let $\vec{A} = 2.00 \ km$, east
$\vec{B} = 3.50 \ km, 45^o$ south of east
$\vec{C} = $?
$\vec{R} = 5.80 \ km, east$.
Vector $\vec{R}=\vec{A} +\vec{B} +\vec{C}$, but we don't know what is $\vec{C}$ so we have to rearrange this equation and have, $\vec{C}=\vec{R} -\vec{A} -\vec{B}$. Solving for the components of the given vectors where the angles are measured from the +$x$-axis rotating towards +$y$-axis we have,
$R_x=(5.80 \ km) \ cos \ 0^o=5.80 \ km$
$R_y=(5.80 \ km) \ sin \ 0^o=0$
$A_x=(2.00 \ km) \ cos \ 0^o=2.00 \ km$
$A_y=(2.00 \ km) \ sin\ 0^o=0$
$B_x=(3.50 \ km) \ cos \ (360^o-45^o)=2.47 \ km$
$B_y=(3.50 \ km) \ sin \ (360^o-45^o)=-2.47 \ km$
Then the components of $\vec{C}$ are,C_x=R_x-A_x-B_x=5.80 \ km-2.00 \ km)-2.47 \ km=1.33 \ km
C_y=R_y-A_y-B_y=0-0-(-2.47 \ km)=2.47 \ km
Then use the Pythagorean theorem and trigonometry to find the magnitude and direction,
$C=\sqrt{(C_x)^2+(C_y)^2}=2.81 \ km$
$tan \ \theta=\frac{C_y}{C_x}$
$\theta=61.7^o$ measured counterclockwise from the +$x$-axis. Or it is $90^o-61.7^o=28.0^o$ east of north.
The vector-addition diagram of $\vec{C}=\vec{R} -\vec{A} -\vec{B}$,