SOLUTION
Let $\vec{A}=285 \ km$, $40.0^o$ north of west
$\vec{B}=$?
$\vec{d}=115 \ km$, east
The resultant displacement $\vec{d}=\vec{A}+\vec{B}$ and Figure 1 shows a vector-addition diagram drawn not to scale, but we don't know what is $\vec{B}$ so we re-arrange the equation and have, $\vec{B}=\vec{d}-\vec{A}$.Solving for the components of the given vectors, where the angles are measured from the +x-axis towards the +y-axis, we have
$A_x=(285 \ km) \ cos \ (180^o-40^o)=-218.3 \ km$
$A_y=(285 \ km) \ sin \ (180^o-40^o)=183.2 \ km$
$d_x=(115 \ km) \ cos \ (0^o)=115 \ km$
$d_y=(115 \ km) \ sin \ (0^o)=0$
then the components of $\vec{B}$ are,$B_x=d_x-A_x=115 \ km-(-218.3 \ km)=333.3 \ km$
$B_y=d_y-A_y=0-(183.2 \ km)=-183.2 \ km$
Solving for the magnitude and direction,
$B=\sqrt{(B_x)^2+(B_y)^2}=380 \ km$
$\theta=arctan \ (\frac{B_y}{B_x})=-29^o$ measured clockwise from the +x-axis, or $29^o$ south of east.
Figure 1 |