Adding and Subtracting Fractions with Unlike Denominators

When adding and subtracting fractions with unlike denominators then you need to find the least common denominator, LCD.

add: $\frac{1}{3} \ + \ \frac{1}{5}$


LCD is just the LCM of the numbers 3 and 5 which is 15. Rewrite both fractions as equivalent fractions with denominator 15:

$\frac{1}{3} \ (\frac{5}{5}) \ + \ \frac{1}{5} \ (\frac{3}{3}) $

= $\frac{5}{5} \ + \ \frac{1}{5}$

= $\frac{8}{15}$

We can also write the addition or subtraction vertically.











subtract: $\frac{5}{6} \ - \ \frac{3}{4}$



Make sure to write your answers in lowest terms or simplified form.

A shorter way to add or subtract fractions is by using the "cross-multiplication" method and the product of the denominators.


add: $\frac{1}{2} \ + \ \frac{4}{7}$

$= \frac{(1 \ x \ 7) \ + \ (4 \ x \ 2)}{2 \ x \ 7}$

$=\frac{7 \ + \ 8}{14} \ = \ \frac{15}{14}$ or $1\frac{1}{14}$


subtract: $\frac{3}{4} \ -  \ \frac{1}{6}$

$= \frac{(3 \ x \ 6) \ - \ (1 \ x \ 4)}{4 \ x \ 6}$

$=\frac{18 \ - \ 4}{24} \ = \ \frac{14}{24}$ or $\frac{7}{12}$


add first before subtracting:
$\frac{2}{3} \ +  \ \frac{1}{5} \ - \ \frac{5}{6}$

$= \frac{(2 \ x \ 5) \ + \ (1 \ x \ 3)}{3 \ x \ 5} \ - \ \frac{5}{6}$

$= \frac{13}{15} \ - \ \frac{5}{6}$

$= \frac{(13 \ x \ 6) \ + \ (5 \ x \ 15)}{15 \ x \ 6}$

$= \frac{153}{90}$ or $1 \ \frac{7}{10}$