Adding and Subtracting Mixed Numbers

When adding and subtracting mixed numbers with then you need to find the least common denominator, LCD, where it is the least common multiple of the denominators.

add: $ \ 3 \ \frac{1}{2} \ + \ 2 \ \frac{1}{4} \ + \ 4 \ \frac{1}{6}$

Use the LCD which is 12. Add the fractional part. And then add the whole numbers.

Thus, $3 \ \frac{1}{2} \ + \ 2 \ \frac{1}{4} \ + \ 4 \ \frac{1}{6} \ = \ 9 \ \frac{11}{12}$.


subtract: $12 \ \frac{5}{6} \ - \ 7 \ \frac{3}{4}$

Thus, $12 \ \frac{5}{6} \ - \ 7 \ \frac{3}{4} \ = \ 5 \ \frac{8}{12}$.


Study other examples below which shows how to simplify answers:
 Example 1: $ \ 1 \ \frac{2}{5} \ + \ 9 \ \frac{7}{10}$
Write equivalent fractions using the LCD.












Simplify: $ \ 10 \ + \ \frac{11}{10} \ = \ 10 \ + \ 1 \ \frac{1}{10} \ = \ 11 \ \frac{1}{10}$

Example 2: $ \ 3 \ \frac{2}{10} \ + \ 1 \ \frac{3}{4}$











What happened? We re-write fraction $3\frac{8}{40}$ so that its numerator is greater, such that 48 > 30 before subtracting.

Let's check our answer:

$1 \ \frac{18}{40} \ + \ 1 \ \frac{3}{4} \ = \ 1 \ \frac{18}{40} \ + \ 1 \ \frac{30}{40}$
$= \ 2 \ \frac{48}{40}$ or $3\frac{2}{10}$